Work engagement of academic staff in South African higher education institutions

Nicole Barkhuizen
University of Johannesburg

S. Rothmann
North-West University, Potchefstroom

ABSTRACT

The objectives of this study were to assess the psychometric properties of the Utrecht Work Engagement Scale (UWES) for academic staff in South African higher education institutions, and to investigate differences between the work engagement of the different demographic groups. A cross-sectional survey design was used, with stratified random samples (n = 595) taken of academics in six South African higher education institutions. The UWES and a biographical questionnaire were administered. Structural Equation Modelling confirmed a three-factor model of work engagement, consisting of three dimensions, namely Vigour, Dedication and Absorption. The three scales of the UWES showed acceptable internal consistency. Statistically significant differences were found between the work engagement of academics with different job levels and qualifications.

INTRODUCTION

Since the beginning of this century, more attention has been paid to what has been described as “positive psychology”: the scientific study of human strength and optimal functioning (Seligman, 2003). This approach attempts to supplement the traditional focus of psychology on psychopathology, disease, illness, disturbance, and malfunctioning (Seligman and Csikzentmihalyi, 2000). The recent trend of concentrating on the optimal function of individuals has also focused attention on organisational psychology, as is demonstrated by a recent plea for more research about “positive organisational behaviour”, that is, the study of positively oriented human resource strengths and psychological capacities (Wright, 2003).

Viewed from this positive perspective, it is not surprising that the concept of burnout has recently been extended to its positive antithesis – work engagement. Instead of looking exclusively at the negative pole, researchers have extended their interest to the positive pole of workers’ well-being (Schaufeli, 2003). Work engagement in particular is a concept relevant to employee well-being and work behaviour. First, work engagement is a positive experience in itself (Schaufeli, Salanova, Gonzalez-Roma and Bakker, 2002). Second, it is related to good health and positive work affect, such as low levels of depression, distress and psychosomatic complaints (Demerouti, Bakker, Janssen and Schaufeli, 2001; Rothbard, 2001). Third, work engagement helps individuals derive positive benefits from stressful work (Britt, Adler and Bartone, 2001). Fourth, work engagement is positively related to job satisfaction, commitment and low turnover intention (Demerouti et al., 2001) and is expected to affect employee performance (Kahn, 1990). Taken together, work engagement has positive outcomes for both individual well-being and organisational functioning.

Maslach and Leiter (1997) define “engagement” as the opposite end of three burnout dimensions – Energy, Involvement and Sense of Efficacy. Schaufeli et al. (2002), in contrast, conceptualised engagement in its own terms, rather than as an opposite to burnout, and define it as a persistent, positive motivational state of fulfilment in employees that is characterised by vigour, dedication and absorption. Thus, regardless of the definition used, the specificities of engagement lie in the combination of high energy (vigour), strong involvement (dedication) and efficacy.

Motivating people to engage in their work remains a classic problem in organisations (Rothbard, 2001). As careers become more complex, people are increasingly faced with actively engaging in multiple roles to fulfil job
According to Maslach and Leiter (1997), work connections to work and to others (Kahn, 1990). “Preferred self” in task behaviours that promote simultaneous employment and expression of a person’s performances. Furthermore, engagement is the uncoupling of selves from the work roles. People can use varying degrees of their selves, physically, cognitively, and emotionally in the work they perform, even as they maintain the boundaries between who they are and the roles they occupy. It seems that the more people draw on their selves to perform their roles, the better are their performances. Moreover, engagement refers to the simultaneous employment and expression of a person’s “preferred self” in task behaviours that promote connections to work and to others (Kahn, 1990).

According to Maslach and Leiter (1997), work engagement is the opposite of burnout. Therefore, the opposite of the three dimensions of burnout (exhaustion, cynicism and low professional efficacy), as measured by the Maslach Burnout Inventory (MBI: Maslach, Jackson and Leiter, 1996), implies work engagement (energy, involvement and efficacy). The specificity of engagement in this context is determined by low scores on the exhaustion and cynicism scales and high scores on the professional efficacy scale of the MBI.

Schaufeli (2003) has taken a different approach to the concept of engagement. Even though he conceptualises engagement as the positive antithesis of burnout, he does not presume that it is assessed by the opposite profiles of the MBI scores, as claimed by Maslach and Leiter (1997). Work engagement is defined as a positive, fulfilling, work-related state of mind that is characterised by vigour, dedication, and absorption (Schaufeli et al., 2002). Rather than a momentary and specific state, engagement refers to a more persistent and pervasive affective-cognitive state that is not focused on any particular object, event, individual, or behaviour. “Vigour” is characterised by high levels of energy and mental resilience while working, the willingness to invest effort in one’s work, and persistence even in the face of difficulties. “Dedication” refers to being fully concentrated and happily engrossed in one’s work, whereby time passes quickly and one has difficulties with detaching oneself from work.

Schaufeli and Bakker (2001) define burnout and work engagement as two distinct concepts that should be assessed independently. Although employees experience work engagement and burnout as being opposite states, of which the former has a positive quality and the latter a negative quality, both need to be considered principally independent of each other. This means, at least in theory, that an employee who is not burned out may score high or low on engagement, whereas an engaged employee may score high or low on burnout. Furthermore, in contrast with Maslach and Leiter’s (1997) approach, this approach enables the assessment of the strength of the association between work engagement and burnout, since different instruments assess both independently. Clearly, work engagement can be distinguished, but not divorced, from burnout in terms of its structure and operationalisation.

Work engagement

The concept of work engagement was introduced by Kahn (1990). Engagement is defined by Kahn (1990: 694) as “the harnessing of organization members’ selves to their work roles.” Personal disengagement is described as the uncoupling of selves from the work roles. People can use varying degrees of their selves, physically, cognitively, and emotionally in the work they perform, even as they maintain the boundaries between who they are and the roles they occupy. It seems that the more people draw on their selves to perform their roles, the better are their performances. Furthermore, engagement is the simultaneous employment and expression of a person’s “preferred self” in task behaviours that promote connections to work and to others (Kahn, 1990).

According to Maslach and Leiter (1997), work engagement can be distinguished, but not divorced, from burnout in terms of its structure and operationalisation. The measurement of work engagement

Based on the work of Schaufeli and colleagues (Schaufeli and Bakker, 2001; Schaufeli et al., 2002), engagement is operationalised by the UWES. The UWES is a self-report instrument that includes three scales, namely vigour (for example “I feel strong and vigorous in my job”), dedication (for example “I am enthusiastic about my job”), and absorption (for example “I feel happy when I’m
engrossed in my work”). In terms of this measuring instrument, work engagement is defined as a persistent, fulfilling, work-related state of mind that is not focused on any particular object, event, individual or behaviour. Vigour is characterised by high levels of energy and mental resilience while working, the willingness to invest effort in one's work, and persistence even in the event of difficulties. Dedication is characterised by a sense of significance, enthusiasm, inspiration, pride and challenge. Finally, Absorption is characterised by being totally and happily immersed in one's work, to the extent that it is difficult to detach oneself from it.

Recent studies, using confirmatory factor analysis, have confirmed the hypothesised three-factor solution of the UWES (i.e. Schaufeli et al., 2002) as superior to a one-factor model (Sonnenstag, 2003; Maslach, Schaufeli and Leiter, 2001). Some other studies also yielded satisfactory internal consistencies for the three scales of the UWES. For example, in samples of university students (n = 314) and employees (n = 619), adequate Cronbach alphas were found as follows: Vigour (6 items), $\alpha = 0.78$ and 0.79; Dedication (5 items), $\alpha = 0.84$ and 0.89 and Absorption (6 items)$\alpha = 0.73$ and 0.72. Applied within the South African context, most studies have confirmed a three-factor solution (Storm and Rothmann, 2003) for the UWES, while one study suggested a two-factor structure (Naudé and Rothmann, 2004). Furthermore, internal consistencies seem promising – at least for the Vigour and Dedication scales. Compared to European countries, South African studies have indicated much lower alpha coefficients on the Absorption subscale, to such an extent that it is not considered suitable for use (Rothmann, 2005).

Work engagement and background variables

Given the significance of work engagement for both the individual and the organisation, some researchers have explored the influence of certain background variables on the process of work engagement (Schaufeli and Bakker, 2003; Sonnenstag, 2003; Rothbard, 2001). Particularly the variables of age and gender have frequently been linked with work engagement. The broad picture to emerge is that older employees seem to be more engaged in their work. Similarly, in a study with university students, higher levels of engagement were found among older students (Schaufeli et al., 2002). In view of the fact that burnout occurs more frequently among younger individuals (see Byrne, 1991), it seems likely that older employees might feel more engaged in their jobs.

Regarding gender, men seems to be more engaged in their jobs than women (see Schaufeli and Bakker, 2003). Schaufeli and Bakker (2003) indicated that men scored significantly higher than women on all three aspects of engagement: Vigour, Dedication and Absorption. However, these differences were relatively small and therefore lacked practical significance.

Little information is available regarding the relationship between work engagement, qualification and job level. However, Langemo (1990) found that academic qualification is related to burnout (which includes disengagement) (see also Kahn, 1990). Based on the findings reported by Byrne (1991), it can also be expected that job level will be related to disengagement. Academics on lower job levels (compared to those on higher job levels) often have high teaching loads in addition to their administrative and research obligations (see Wissing, Du Toit and Rothmann, 2002), which could result in disengagement.

The above discussion leads to the following hypotheses:

H1: Work engagement, as measured by the UWES, is a three-dimensional construct
H2: The UWES shows high internal consistency
H3: Academics in higher organisational positions are more work-engaged than those in lower organisational positions
H4: Academics with post-graduate qualifications are more work-engaged than academics with lower levels of qualifications
H5: Older academics are more engaged in their work than younger academics
H6: Male academics are more work-engaged than females

METHOD

Research design

A cross-sectional survey design was used. The questionnaires were mailed to 2000 academic staff members at six South African universities. A total of 633 questionnaires were returned, with 595 found usable for data analysis. This represents a 28.33% response rate.

Most of the participants were from the North-West University (46.7%). Academic rank consisted primarily of lecturers (29.6%), with almost half of them in possession of a doctorate (46.7%). The gender distribution was about equal (females constituted 50.1%). Most participants (67.6%) were married and between the ages of 40 and 49 years (30.6%). Participants were predominantly Afrikaans speaking (63.9%), with 86.2% currently tenured at their institutions.

Procedure

The South African Universities Vice-Chancellors Association (SAUVCA) was asked for permission to conduct the study. The questionnaires were mailed to
human resource officers at participating universities, who distributed them in the different higher education institutions. A covering letter explained the purpose of the study, stated that participation was voluntary, and also guaranteed confidentiality. Respondents were asked to return the completed questionnaires in a sealed envelope, either to the person who had distributed them or directly to the research team.

Measuring instrument

The Utrecht Work Engagement Scale (UWES) (Schaufeli et al., 2002) was used to measure the levels of work engagement. Four rephrased items in which the language had been simplified were added to the 17-item UWES. Three dimensions of engagement can be distinguished, namely Vigour (6 items; for example “I am bursting with energy in my work”), Dedication (5 items; for example “I find my work full of meaning and purpose”) and Absorption (6 items; for example “When I am working, I forget everything else around me”). Engaged individuals are characterised by high levels of Vigour and Dedication and also elevated levels of Absorption. In terms of internal consistency, reliability coefficients for the three subscales between 0.68 and 0.91 have been reported. In a South African sample of police officers, Storm and Rothmann (2003) reported the following alpha coefficients for the three subscales: Vigour: 0.78; Dedication: 0.89 and Absorption: 0.78. In light of the fact that all items on the UWES are phrased in a positive manner, it was decided to mix these items with the items of the MBI in one questionnaire. (The items of the MBI are predominantly phrased in a negative manner, and mixing them with the UWES items should guard against the possibility of response sets.)

A biographical questionnaire was developed to collect demographic information about the participants. Information that was collected included the following: city of residence, university, gender, marital status, home language, age, highest educational qualifications, job category, job title, years of employment in current institution, basis of employment, working hours, amount of time spent travelling to and from workplace, annual leave and intention to resign.

Statistical analysis

The statistical analysis was carried out using the SPSS (SPSS, 2003) and AMOS programmes (Arbuckle, 1997). The reliability and validity of the UWES were assessed by means of Cronbach alpha coefficients, as well as confirmatory factor analysis. Descriptive statistics (means, standard deviations, skewness and kurtosis) were also used to analyse the data.

Structural equation modelling, as implemented in AMOS (Arbuckle, 1997), was used to test the factorial model of the UWES, using the maximum likelihood method. Given that this study is a first in assessing the dimensions of work engagement among South African academic staff, one-, two- and three-factor models were considered. Hypothesised relationships were tested empirically for goodness of fit with the sample data. Among the fit indices produced by the AMOS programme is the Chi-square statistic (χ^2), which is the test of absolute fit of the model. However, the χ^2 value is sensitive to sample size. Therefore, additional goodness-of-fit indices, such as the Goodness of Fit Index (GFI), the Adjusted Goodness of Fit Index (AGFI), the Normed Fit Index (NFI), the Comparative Fit Index (CFI), the Tucker-Lewis Index (TLI) and the Root Means Square Error of Approximation (RMSEA), were also considered in this study.

Multivariate analysis of variance (MANOVA) was used to assess the significance of differences between the work engagement (vigour, dedication and absorption) of demographic groups. MANOVA tests whether mean difference scores among groups on a combination of dependent variables are likely to have occurred by chance (Tabachnick and Fidell, 2001). Using MANOVA, a new dependent variable that maximises group differences was created from the set of dependent variables. One-way analysis of variance was then performed on the newly created dependent variable. Wilks' Lambda was used to test the significance of the effects. When an effect was significant in MANOVA, ANOVA was used to identify which dependent variables had been affected. Because multiple ANOVAs were used, Bonferroni-type adjustment was made for inflated Type I error. Tukey tests were conducted to indicate which groups differed significantly from other groups when ANOVAs were done.

T-tests were conducted to determine whether there were differences between the groups in the sample. Effect sizes (Steyn, 1999; Cohen, 1988) were used in addition to statistical significance assessments to evaluate the significance of differences. Effect sizes indicate whether differences are practically significant. A cut-off point of 0.50 (medium effect) (Cohen, 1988) was set for the practical significance of differences between means.

RESULTS

Structural Equation Modelling (SEM) methods, as implemented by AMOS (Arbuckle, 1997), were used to test the factor structure of the UWES. Data analysis was conducted in two consecutive steps. Firstly, an initial assessment of the model fit was done by considering the overall χ^2 value, together with its degrees of freedom and probability value. Several goodness-of-fit statistics (GFI, AGFI, NFI, TLI, CFI and RMSEA) were then used to globally assess the model fits. Secondly, given findings of a poor-fitting initially hypothesised UWES model, additional analyses were done. Possible misspecifications, as suggested by the so-called “modification indices”, were considered in order to fit a revised, re-specified model to
the data, if required.

Hypothesised model

The following hypothesised models of the UWES were initially tested using confirmatory factor analysis:

- Model 1: A one-factor model
- Model 2: A two-factor model
- Model 3: A three-factor model

Results of the structural equation analyses for the three measurement models are reported in Table 1.

Table 1 indicates an overall poor fit of the one-factor model to the data, with statistically significant χ^2 values of 801.81 ($df = 119; p = 0.00$). Model 1 was also not good from a practical perspective. GFI, NFI, TLI and CFI values lower than 0.90 and RMSEA value higher than 0.08 are indicative of failure to confirm the hypothesised model.

Statistically significant χ^2 values of ($\chi^2 = 698.53; df = 118; p = 0.00$) show that Model 2 (two-factor) fits the data better, although the fit statistics indicated a relatively poor fit of the model to the data (for example GFI, NFI, TLI and CFI values were all lower than 0.90 and RMSEA value higher than 0.08 are indicative of failure to confirm the hypothesised model.

Overall, model 3 (three-factor) seems to fit the data best, with the statistically significant value of 647.16 ($df = 116; p = 0.00$). From a practical perspective, however, a large χ^2 value relative to the degrees of freedom, together with NFI, TLI and CFI values lower than 0.90, and a RMSEA value higher than 0.08, is indicative of a failure to confirm the hypothesised model, and requires a need to modify the model to better fit the data.

Post hoc analysis

Given the rejection of the one-, two- and three-factor models, the focus shifted from model test to model development. Based on the regression weights and standardised residual covariances, Model 3 was re-estimated with Item 9 and Item 12 removed. The modification indexes (MI) were also considered to pinpoint areas of misspecification in the model. Errors between Item 16 and Item 17 (MI = 38.59) were allowed to correlate. Compared with MI values for all other error covariance parameters, these values were exceptionally high and in need of re-specification. Model 3 was re-specified with these parameters freely estimated, and errors of item pairs (AB16-V17) allowed to correlate. The subsequent analysis is therefore based on the 15-item version of the UWES. The results related to the 15-item model are shown in Table 2.

From Table 2 it is evident that the χ^2 value of 396.55 ($df = 87; p = 0.00$) and other indices have improved compared to those of the previous three-factor model. Furthermore, the other fit statistics indicate a more acceptable fit for the re-specified model. Since this model fit was satisfactory, no further modifications of the model were considered.

The descriptive statistics and alpha coefficients of the three factors of the UWES are provided in Table 3.

From the results in Table 3, it is evident that the scores of the three factors are reasonably normally distributed. With regard to the internal consistency of the scales, Vigour and Dedication show acceptable alpha coefficients above the

Table 1

THE GOODNESS-OF-FIT STATISTICS FOR THE HYPOTHESISED UWES MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>χ^2/df</th>
<th>GFI</th>
<th>AGFI</th>
<th>NFI</th>
<th>TLI</th>
<th>CFI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>801.81</td>
<td>6.74</td>
<td>0.83</td>
<td>0.78</td>
<td>0.81</td>
<td>0.81</td>
<td>0.83</td>
<td>0.10</td>
</tr>
<tr>
<td>Model 2</td>
<td>698.53</td>
<td>5.92</td>
<td>0.86</td>
<td>0.82</td>
<td>0.84</td>
<td>0.84</td>
<td>0.86</td>
<td>0.09</td>
</tr>
<tr>
<td>Model 3</td>
<td>647.16</td>
<td>5.58</td>
<td>0.82</td>
<td>0.82</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 2

GOODNESS-OF-FIT STATISTICS FOR THE RE-SPECIFIED THREE-FACTOR UWES MODEL

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>χ^2/df</th>
<th>GFI</th>
<th>AGFI</th>
<th>NFI</th>
<th>TLI</th>
<th>CFI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default model</td>
<td>396.55</td>
<td>4.56</td>
<td>0.91</td>
<td>0.88</td>
<td>0.89</td>
<td>0.89</td>
<td>0.91</td>
<td>0.07</td>
</tr>
</tbody>
</table>
0.70 guideline provided by Nunnally and Bernstein (1994), whilst the alpha for Absorption is slightly below this cut-off point.

Based on the above-mentioned findings, Hypotheses 1 and 2 are accepted.

As pointed out earlier, MANOVA and ANOVA analyses were conducted to assess the relationships between engagement on the one hand, and demographic variables such as age, job level, and qualifications on the other hand. These demographic variables were first analysed for statistical significance, using Wilks’ Lambda statistics. The relationship between engagement and those demographic variables that showed statistically significant differences was further analysed using an ANOVA, followed by Tukey’s HSD tests. The results of these comparisons are reflected in Table 4.

Table 4 shows that qualifications impacted significantly on the combined dependent variable work engagement ($F_{(15, 1615)} = 2.73, p < 0.01$); Wilks’ Lambda = 0.94; $\eta^2 = 0.02$). However, this effect was small (only 2% of the variance explained). An analysis of each dependent variable, using a Bonferroni adjusted alpha level of 0.025, showed that academics differed in terms of Dedication ($F_{(4, 561)} = 3.70, p < 0.01, \eta^2 = 0.03$) and Absorption ($F_{(4, 561)} = 6.11, p < 0.01, \eta^2 = 0.04$). Professors were significantly more dedicated to their work than senior lecturers and more absorbed in their work than junior lecturers and senior lecturers respectively. No significant differences were found between the Vigour levels of academics based on their job levels.

The above-mentioned results support Hypotheses 3 and 4, namely that statistically significant differences exist between the engagement levels of academics, based on their qualifications and job levels.

According to Table 4, job level impacted significantly on the combined dependent variable work engagement ($F_{(12, 1479)} = 2.74, p < 0.01$); Wilks’ Lambda = 0.94; $\eta^2 = 0.02$). However, this effect was small (only 2% of the variance explained). An analysis of each dependent variable, using a Bonferroni adjusted alpha level of 0.025, showed that academics differed in terms of Dedication ($F_{(4, 561)} = 3.70, p < 0.01, \eta^2 = 0.03$) and Absorption ($F_{(4, 561)} = 6.11, p < 0.01, \eta^2 = 0.04$). Professors were significantly more dedicated to their work than senior lecturers and more absorbed in their work than junior lecturers and senior lecturers respectively. No significant differences were found between the Vigour levels of academics based on their job levels.

The above-mentioned results support Hypotheses 3 and 4, namely that statistically significant differences exist between the engagement levels of academics, based on their qualifications and job levels.

According to Table 4, no statistically significant differences were found between work engagement of academics of different age groups. Therefore Hypothesis 5 is not supported. Furthermore, T-tests were carried out to determine whether differences exist between the levels of Vigour/Dedication and Absorption experienced by male and female academics. No statistically significant differences were found between the work engagement of male and female academics. Therefore, the results do not support Hypothesis 6.

Table 3
DESCRIPTIVE STATISTICS AND ALPHA COEFFICIENTS OF THE UWES

<table>
<thead>
<tr>
<th>Item</th>
<th>Mean</th>
<th>SD</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigour</td>
<td>20.99</td>
<td>5.14</td>
<td>- 0.55</td>
<td>- 0.05</td>
<td>0.75</td>
</tr>
<tr>
<td>Dedication</td>
<td>23.29</td>
<td>5.29</td>
<td>- 0.93</td>
<td>0.42</td>
<td>0.85</td>
</tr>
<tr>
<td>Absorption</td>
<td>21.53</td>
<td>5.07</td>
<td>- 0.57</td>
<td>- 0.03</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 4
MANOVAS – DIFFERENCES IN ENGAGEMENT LEVELS OF DEMOGRAPHIC GROUPS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>F</th>
<th>df</th>
<th>Error df</th>
<th>p</th>
<th>η^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.97</td>
<td>1.47</td>
<td>12</td>
<td>1545</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>Qualifications</td>
<td>0.94</td>
<td>2.73</td>
<td>15</td>
<td>1615</td>
<td>0.00*</td>
<td>0.02</td>
</tr>
<tr>
<td>Job level</td>
<td>0.94</td>
<td>2.74</td>
<td>12</td>
<td>1479</td>
<td>0.00*</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* Statistically significant difference; $p < 0.01$
DISCUSSION

The objectives of this study were to assess the psychometric properties of the UWES for academic staff in South African higher education institutions, and to investigate differences between work engagement of the different demographic groups. Structural equation modelling confirmed a 3-factor model of work engagement, consisting of Vigour, Dedication and Absorption. These scales showed acceptable internal consistency. Practically significant differences were found between the work engagement of academics with different job levels and qualifications.

Because this study was a first in determining the dimensions of work engagement among South African academic staff, one-, two- and three-factor models were tested. Results showed that a three-factor model of the UWES, consisting of Vigour, Dedication and Absorption fits the data best. However, inspection of the factorial structure yielded two problematic items (9 and 12). Item 9 (“I feel happy when I am engrossed in my work”) and Item 12 (“In my job, I can continue working for very long periods of time”) showed high standardised residuals. These findings suggest that the items may require deletion or content modification (in future studies the latter must rather be considered). For example, when closely reviewing item 12 (Vigour), it might as well be interpreted for an Absorption item. Absorption as such indicates a difficulty the individual has to distance him/herself from the job, and this item ambiguously seems to imply the same. It is worth mentioning that previous South African studies also found problematic loadings on item 9 (Naudé and Rothmann, 2004) and item 12 (Jackson, 2004). Based on both conceptual and empirical grounds, the three-factor model was re-specified with items 9 and 12 deleted from the original 17-item theoretical model of engagement (as measured by the UWES).

Demographically speaking, academics in possession of a doctoral degree were more absorbed in their jobs than those with a four-year degree or honours. These results support the findings of Gilbert (2001), namely that highly educated workers tend to be more absorbed with their work. According to Gilbert, it appears that among this class of “knowledge workers”, work has become more psychologically central, and coupled with a constant increase in working hours, individuals indeed find it difficult to detach themselves from the job.

The results also showed that professors were significantly more dedicated to their work than senior lecturers, and more absorbed in their work than junior lecturers and senior lecturers respectively. Winter et al. (2002) found that motivating core activities such as task identity, autonomy, skill variety and job challenge satisfied professors’ need for engaging in meaningful work activities. Moreover, Gilbert (2001) suggested that a worker’s motivation by the job, organisation, or work in general and in particular job autonomy, might predict an individual’s level of absorption in his/her work. Another line of research argues that the higher levels of autonomy that professors experience in relation to their colleagues in lower ranks, are also reflected in their tendency to be more committed to their institutions (Winefield, Gillespie, Stough, Dua and Hapuararchi, 2002). In this context Gilbert (2001) suggested that within a given organisation, employees who have high organisational commitment are more likely to make work a higher priority, and are therefore more absorbed in their work.

LIMITATIONS

This study is not without its limitations. One limitation is the sample size, specifically the distribution of language groups and the sampling procedure in the present study, which has significant limitations in terms of the findings applied to the total population. Future studies could benefit in terms of a stratified random-sample design which would ensure sufficient representation of the different groups in the total academic population. Secondly, future studies should focus on longitudinal designs where inference in terms of cause and effect could be made.

MANAGERIAL IMPLICATIONS

Higher education institutions should attend to the work engagement (vigour, dedication and absorption) of their academic staff by measuring it and providing feedback to individuals. Academics on all job levels should be targeted with interventions to promote work engagement (specifically because the results of this study showed that academics with higher qualifications and on higher job levels are more engaged). Although more research is needed regarding correlates of work engagement, four areas could be targeted to promote engagement of academics. First, it is important that academics have the resources to do their work. Resources include a challenging task and the availability of assistants. Second, academic leaders play an important role in promoting work engagement. In order to enhance engagement, leaders should (Schabracc, 2003): (a) acknowledge and reward good performance instead of exclusively correcting substandard performance; (b) be fair towards individuals; (c) put problems on the agenda and discuss these in an open, constructive and problem solving way; (d) coach their staff by helping them with setting goals, planning their work, pointing out pitfalls, and giving advice as necessary; and (e) interview staff members on a regular basis about their personal functioning, professional development, and career development. Third, work engagement could be promoted by stimulating the self-efficacy beliefs of academics through mastery experiences, vicarious experience, verbal persuasion, and positive emotional states (Bandura, 2001).
Based on the results of this study, it is strongly recommended that some of the UWES items (specifically related to the Absorption subscale) be re-formulated. Problems that were encountered with the items included the use of metaphors and some English words which might have been difficult to understand. In particular, Van de Vijver and Leung (1997) suggest that metaphors should be avoided in questionnaires. Given the eleven official languages in South Africa, English is a second language for most people, and consequently the use of metaphors and uncommon words such as “resilience”, “immersed” and “engrossed” in the items could have contributed to misunderstandings. Moreover, if the UWES is to be used, items 9 and 12 should be omitted from the questionnaire or rephrased in a more acceptable South African language format, to reduce semantic problems.

It is strongly recommended that future research investigate the relationships between work engagement, demographic variables and job resources.

Author's Note
The material described in this study is based upon work supported by the National Research Foundation under grant number 2053344.

REFERENCES
Maslach, C. and Leiter, M.P. 1997. The Truth about